Transitive and fully transitive primary abelian groups
نویسندگان
چکیده
منابع مشابه
Uniquely Transitive Torsion-free Abelian Groups
We will answer a question raised by Emmanuel Dror Farjoun concerning the existence of torsion-free abelian groups G such that for any ordered pair of pure elements there is a unique automorphism mapping the first element onto the second one. We will show the existence of such a group of cardinality λ for any successor cardinal λ = μ+ with μ = μ0.
متن کاملAUTOMORPHISM GROUPS OF SOME NON-TRANSITIVE GRAPHS
An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for ij, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for distinct nuclei. Balaban introduced some monster graphs and then Randic computed complexit...
متن کاملTransitive actions of finite abelian groups of sup-norm isometries
There is a longstanding conjecture of Nussbaum, which asserts that every finite set in R on which a cyclic group of sup-norm isometries acts transitively contains at most 2 points. The existing evidence supporting Nussbaum’s conjecture only uses abelian properties of the group. It has therefore been suggested that Nussbaum’s conjecture might hold more generally for abelian groups of sup-norm is...
متن کاملAbelian simply transitive affine groups of symplectic type Oliver
The set of all Abelian simply transitive subgroups of the affine group naturally corresponds to the set of real solutions of a system of algebraic equations. We classify all simply transitive subgroups of the symplectic affine group by constructing a model space for the corresponding variety of solutions. Similarly, we classify the complete global model spaces for flat special Kähler manifolds ...
متن کاملPentavalent symmetric graphs admitting transitive non-abelian characteristically simple groups
Let Γ be a graph and let G be a group of automorphisms of Γ. The graph Γ is called G-normal if G is normal in the automorphism group of Γ. Let T be a finite non-abelian simple group and let G = T l with l ≥ 1. In this paper we prove that if every connected pentavalent symmetric T -vertex-transitive graph is T -normal, then every connected pentavalent symmetric G-vertex-transitive graph is G-nor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1968
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1968.25.249